FBS/BSA media concentration determines CCCP’s ability to depolarize mitochondria and activate PINK1-PRKN mitophagy
نویسندگان
چکیده
منابع مشابه
Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy.
PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK152, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction o...
متن کاملPINK1-dependent recruitment of Parkin to mitochondria in mitophagy.
Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARK2/Parkin mutations cause autosomal recessive forms of Parkinson's disease. Upon a loss of mitochondrial membrane potential (DeltaPsi(m)) in human cells, cytosolic Parkin has been reported to be recruited to mitochondria, which is followed by a stimulation of mitochondrial autophagy. Here, we show that the relocation...
متن کاملPINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin
Loss-of-function mutations in PINK1 and Parkin cause parkinsonism in humans and mitochondrial dysfunction in model organisms. Parkin is selectively recruited from the cytosol to damaged mitochondria to trigger their autophagy. How Parkin recognizes damaged mitochondria, however, is unknown. Here, we show that expression of PINK1 on individual mitochondria is regulated by voltage-dependent prote...
متن کاملPINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
Parkinson's disease (PD) is a prevalent neurodegenerative disorder. Recent identification of genes linked to familial forms of PD such as Parkin and PINK1 (PTEN-induced putative kinase 1) has revealed that ubiquitylation and mitochondrial integrity are key factors in disease pathogenesis. However, the exact mechanism underlying the functional interplay between Parkin-catalyzed ubiquitylation an...
متن کاملSuperoxide drives progression of Parkin/PINK1-dependent mitophagy following translocation of Parkin to mitochondria
Reactive oxygen species (ROS) and mitophagy are profoundly implicated in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease (PD). Several studies have suggested that ROS are not involved in mitochondrial translocation of Parkin which primes mitochondria for autophagic elimination. However, whether ROS play a role in the execution of mitophagy is unknown. In the present ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Autophagy
سال: 2019
ISSN: 1554-8627,1554-8635
DOI: 10.1080/15548627.2019.1603549